

Problem set 1

Due date: 21st Jan

Part A (submit any four)

Exercise 1. (1) \mathcal{F} is closed under finite and countable unions, intersections, differences, symmetric differences.
 (2) If $A_n \in \mathcal{F}$, $n = 1, 2, \dots$, then $\limsup A_n := \{\omega : \omega \text{ belongs to infinitely many } A_n\}$ and $\liminf A_n := \{\omega : \omega \text{ belongs to all but finitely many } A_n\}$ are also in \mathcal{F} . In particular, if A_n increases or decreases to A , then $A \in \mathcal{F}$.
 (3) $\mathbf{P}(\emptyset) = 0$, $\mathbf{P}(\Omega) = 1$. For any $A, B \in \mathcal{F}$ we have $\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B) - \mathbf{P}(A \cap B)$. If $A_n \in \mathcal{F}$, then $\mathbf{P}(\bigcup A_n) \leq \sum \mathbf{P}(A_n)$.
 (4) If $A_n \in \mathcal{F}$ and A_n increases (decreases) to A , the $\mathbf{P}(A_n)$ increases (decreases) to $\mathbf{P}(A)$.

Exercise 2. Let Ω be an arbitrary set. Let $\mathcal{F} = \{A \subset \Omega : \text{either } A \text{ or } A^c \text{ is countable}\}$ (where ‘countable’ includes finite and empty sets). Define $\mathbf{P}(A) = 0$ if A is countable and $\mathbf{P}(A) = 1$ if A^c is countable. Show that \mathcal{F} is a σ -field and that \mathbf{P} is a probability measure on \mathcal{F} .

Exercise 3. Suppose S is a π -system and is further closed under complements ($A \in S$ implies $A^c \in S$). Show that S is an algebra.

Exercise 4. Let \mathbf{P} be a p.m. on a σ -algebra \mathcal{F} and suppose $S \subset \mathcal{F}$ be a π -system. If $A_k \in S$ for $k \leq n$, write $\mathbf{P}(A_1 \cup A_2 \cup \dots \cup A_n)$ in terms of probabilities of sets in S .

Exercise 5. Suppose $\sigma(S) = \mathcal{F}$ and \mathbf{P}, \mathbf{Q} are two probability measure on \mathcal{F} . If $\mathbf{P}(A) = \mathbf{Q}(A)$ for all $A \in S$, is it necessarily true that $\mathbf{P}(A) = \mathbf{Q}(A)$ for all $A \in \mathcal{F}$? If yes, prove it. If not, give a counterexample.

Exercise 6. Let m_* be the Lebesgue outer measure on $[0, 1]$. Show that $m_*[a, b] = b - a$ for any $[a, b] \subset [0, 1]$.

Part B (submit any one)

Exercise 7 (How much bigger is $\overline{\mathcal{B}}$ than \mathcal{B} ?). Let m be the Lebesgue p.m. on the Cartheodory σ -algebra $\overline{\mathcal{B}}$ and let m_* be the corresponding outer measure defined on all subsets. We say that a subset $N \subset [0, 1]$ is a null set if $m_*(N) = 0$. Show that

$$\overline{\mathcal{B}} = \{B \cup N : B \in \mathcal{B} \text{ and } N \text{ is null}\}$$

where \mathcal{B} is the Borel σ -algebra of $[0, 1]$.

Exercise 8 (Completion of σ -algebras). Given a probability space $(\Omega, \mathcal{F}, \mathbf{P})$, say that N is \mathbf{P} -null if there is some $A \in \mathcal{F}$ with $A \supset N$ and $\mathbf{P}(A) = 0$. Define

$$\overline{\mathcal{F}} = \{B \cup N : B \in \mathcal{F} \text{ and } N \text{ is null}\}$$

and for any $A \in \overline{\mathcal{F}}$ set $\overline{\mathbf{P}}(A) = \mathbf{P}(B)$ if $A = B \cup N$ with $B \in \mathcal{F}$ and N is \mathbf{P} -null (first check that $\overline{\mathbf{P}}(A)$ is well-defined since there may be many ways to write A in the form $B \cup N$).

Show that $\overline{\mathcal{F}}$ is a σ -algebra and that $\overline{\mathbf{P}}$ a p.m. on $\overline{\mathcal{F}}$. [Remark: From this exercise and the last, $\overline{\mathcal{B}}$ is just the completion of \mathcal{B}]

Exercise 9 (Further non-trivial measures). Use the general procedure as described in the lectures to construct the following measures.

(a) A p.m. on $([0, 1]^d, \mathcal{B})$ such that $\mathbf{P}([a_1, b_1] \times \dots \times [a_d, b_d]) = \prod_{k=1}^d (b_k - a_k)$ for all cubes contained in $[0, 1]^d$. This is the d -dimensional Lebesgue measure.

(b) A p.m. on $\{0, 1\}^{\mathbb{N}}$ such that for any cylinder set $A = \{\omega : \omega_{k_j} = \varepsilon_j, j = 1, \dots, n\}$ (any $n \geq 1$ and $k_j \in \mathbb{N}$ and $\varepsilon_j \in \{0, 1\}$) we have (for a fixed $p \in [0, 1]$ and $q = 1 - p$)

$$\mathbf{P}(A) = \prod_{j=1}^n p^{\varepsilon_j} q^{1-\varepsilon_j}.$$

[Hint: Start with the algebra generated by cylinder sets].