## Problem set 1

Due date: 21st Jan
Part A (submit any four)
Exercise 1. (1) $\mathcal{F}$ is closed under finite and countable unions, intersections, differences, symmetric differences.
(2) If $A_{n} \in \mathcal{F}, n=1,2 \ldots$, then $\limsup A_{n}:=\left\{\omega: \omega\right.$ belongs to infinitely many $\left.A_{n}\right\}$ and $\liminf A_{n}:=\{\omega$ : $\omega$ belongs to all but finitely many $\left.A_{n}\right\}$ are also in $\mathcal{F}$. In particular, if $A_{n}$ increases or decreases to $A$, then $A \in \mathcal{F}$.
(3) $\mathbf{P}(\phi)=0, \mathbf{P}(\Omega)=1$. For any $A, B \in \mathcal{F}$ we have $\mathbf{P}(A \cup B)=\mathbf{P}(A)+\mathbf{P}(B)-\mathbf{P}(A \cap B)$. If $A_{n} \in \mathcal{F}$, then $\mathbf{P}\left(\cup A_{n}\right) \leq \sum \mathbf{P}\left(A_{n}\right)$.
(4) If $A_{n} \in \mathcal{F}$ and $A_{n}$ increases (decreases) to $A$, the $\mathbf{P}\left(A_{n}\right)$ increases (decreases) to $\mathbf{P}(A)$.

Exercise 2. Let $\Omega$ be an arbitrary set. Let $\mathcal{F}=\left\{A \subset \Omega\right.$ : either $A$ or $A^{c}$ is countable (where 'countable' includes finite and empty sets). Define $\mathbf{P}(A)=0$ if $A$ is countable and $\mathbf{P}(A)=1$ if $A^{c}$ is countable. Show that $\mathcal{F}$ is a $\sigma$-field and that $\mathbf{P}$ is a probability measure on $\mathcal{F}$.
Exercise 3. Suppose $S$ is a $\pi$-system and is further closed under complements ( $A \in S$ implies $A^{c} \in S$ ). Show that $S$ is an algebra.
Exercise 4. Let $\mathbf{P}$ be a p.m. on a $\sigma$-algebra $\mathcal{F}$ and suppose $S \subset \mathcal{F}$ be a $\pi$-system. If $A_{k} \in S$ for $k \leq n$, write $\mathbf{P}\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)$ in terms of probabilities of sets in $S$.

Exercise 5. Suppose $\sigma(S)=\mathcal{F}$ and $\mathbf{P}, \mathbf{Q}$ are two probability measure on $\mathcal{F}$. If $\mathbf{P}(A)=\mathbf{Q}(A)$ for all $A \in S$, is it necessarily true that $\mathbf{P}(A)=\mathbf{Q}(A)$ for all $A \in \mathcal{F}$ ? If yes, prove it. If not, give a counterexample.
Exercise 6. Let $m_{*}$ be the Lebesgue outer measure on $[0,1]$. Show that $m_{*}[a, b]=b-a$ for any $[a, b] \subset[0,1]$.

Part B (submit any one)
Exercise 7 (How much bigger is $\overline{\mathcal{B}}$ than $\mathcal{B}$ ?). Let $m$ be the Lebesgue p.m. on the Cartheodary $\sigma$-algebra $\overline{\mathcal{B}}$ and let $m_{*}$ be the corresponding outer measure defined on all subsets. We say that a subset $N \subset[0,1]$ is a null set if $m_{*}(N)=0$. Show that

$$
\overline{\mathcal{B}}=\{B \cup N: B \in \mathcal{B} \text { and } N \text { is null }\}
$$

where $\mathcal{B}$ is the Borel $\sigma$-algebra of $[0,1]$.
Exercise 8 (Completion of $\sigma$-algebras). Given a probability space $(\Omega, \mathcal{F}, \mathbf{P})$, say that $N$ is $\mathbf{P}$-null if there is some $A \in \mathcal{F}$ with $A \supset N$ and $\mathbf{P}(A)=0$. Define

$$
\overline{\mathcal{F}}=\{B \cup N: B \in \mathcal{F} \text { and } N \text { is null }\}
$$

and for any $A \in \overline{\mathcal{F}}$ set $\overline{\mathbf{P}}(A)=\mathbf{P}(B)$ if $A=B \cup N$ with $B \in \mathcal{B}$ and $N$ is $\mathbf{P}$-null (first check that $\overline{\mathbf{P}}(A)$ is well-defined since there may be many ways to write $A$ in the form $B \cup N$ ).

Show that $\overline{\mathcal{F}}$ is a $\sigma$-algebra and that $\overline{\mathbf{P}}$ a p.m. on $\overline{\mathcal{F}}$. [Remark: From this exercise and the last, $\overline{\mathcal{B}}$ is just the completion of $\mathcal{B}$ ]

Exercise 9 (Further non-trivial measures). Use the general procedure as described in the lectures to construct the following measures.
(a) A p.m. on $\left([0,1]^{d}, \mathcal{B}\right)$ such that $\mathbf{P}\left(\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{d}, b_{d}\right]\right)=\prod_{k=1}^{d}\left(b_{k}-a_{k}\right)$ for all cubes contained in $[0,1]^{d}$. This is the d-dimensional Lebesgue measure.
(b) A p.m. on $\{0,1\}^{\mathbb{N}}$ such that for any cylinder set $A=\left\{\omega: \omega_{k_{j}}=\varepsilon_{j}, j=1, \ldots, n\right\}$ (any $n \geq 1$ and $k_{j} \in \mathbb{N}$ and $\varepsilon_{j} \in\{0,1\}$ ) we have (for a fixed $p \in[0,1]$ and $q=1-p$ )

$$
\mathbf{P}(A)=\prod_{j=1}^{n} p^{\varepsilon_{j}} q^{1-\varepsilon_{j}}
$$

[Hint: Start with the algebra generated by cylinder sets].

